Appendix B

An Introduction to Neural

Networks

Since introductions to neural networks can be found in many sources [9, 40], the treatment
presented here will be very brief. Although neural networks are modeled after the interconnected
networks of biological neurons found in living systems, the neural networks used in this thesis
will be extremely simple by comparison. Each neuron is modeled as a device that has some
number of inputs and a single output (see Figure B.1). Each input or output is considered
to have an excitation level that can vary between -1 and 1.! For a particular neuron (call
it neuron number j) with n; inputs, the input excitation levels will be denoted as z;, where
i = 1...nj, and the output excitation level will be denoted as y;. Inside the neuron, each input
has associated with it a connection weight w;;. If the connection weight associated with a given
input is negative, the input connection is said to be inhibitory, otherwise it is excitatory. To

form the output, the neuron first calculates the action potential A; according to

n;
Aj =) wizi. (B.1)
=1
Then, a squashing function o is applied to Aj to obtain the output y;- The purpose of the

squashing function is to keep the output within the range -1 to 1. Neurons based on many

different squashing functions are possible, but the one used here is a sigmoid function that

1Limiting the range of excitation levels to lie between 0 and 1 is more common

222

Figure B.1: A single neuron (with 4 inputs)

takes the form

2 .

The value of y; for large positive values of A; will approach +1, while large negative Ays will
produce y;s near -1. The output of an individual neuron thus depends only on the inputs z,
and on the internal state of the neuron, which is given by the connection weights w;.

In principle, the inputs and outputs of several neurons can be connected in any haphazard
fashion to produce a neural network. However, the networks considered in this thesis are simple
special cases called 3-layer feedforward networks. These networks consists of 3 layers of neurons;
called the input layer, the hidden layer, and the output layer (see Figure B.2). Let the neurons in
each layer be indexed by the subscript 1 for the input layer, j for the hidden layer, and for the
output layer, and let the number of neurons in each layer be Ninp, Naia, and Nour. The numbers
of neurons in each of the layers can be varied according to the demands of the problem that the
network is designed to solve. In this thesis, the structure of the networks being considered will
be further limited to those networks having a single output neuron (N = .1). The number of
neurons in the hidden layer can be adjusted freely to optimize network performance. Having
too few hidden layer neurons will prevent the network from converging (training),

while having
too many allows the network to simply “memorize” the training patterns instead of generalizing

224

7/

7

b
2

258

HOO
%}é

N
A

Input Hidden Output
layer layer layer

Figure B.2: A 3-layer feedforward neural network with 7 input, 4 hidden, and 1 output layer
neuron

their features.

The input neurons do very little; they each accept one input value from the outside world,
pass it straight through to their outputs (their single connection weight has a value of 1), and
“fan-out” the value to an input on each of the neurons in the hidden layer. Each of the hidden
layer neurons thus receives an input z; from each input layer neuron. Each of the Nj;q neurons
in the hidden layer (indexed by j) then has an internal connection weight w;; associated with
each of the inputs z; from the input layer neurons. Likewise, the single output layer neuron
receives inputs z; from the hidden layer neurons, and via the connection weights wjy, produces
the final network output yi. The response of the neural network is thus given by

Naw Niay
Y=o Z wjx0 Z Wi T (B.3)
) i
where the sums run only over the neurons in the appropriate layer.

Actually, there is an additional bias neuron added to the input and hidden layers whose

output is fixed at 1.2 Just as any complicated function can be represented as a sum of sines and

cosines (plus a constant) in a Fourier series, it can be proved that any ‘well-behaved’ function

2The bias ncuron can be incorporated into Equation B.3 by extending the

the appropriate connection weights, and fixing the extra x, =1, sums over 1 and j by one, adding

225

of Ninp variables can be approximated by Equation B.3 as a sum of sigmoid functions (with

the offset provided by the bias neuron)[37]. Thus, any reasonable relation (mapping) between
the inputs z; and the output y; can be “learned” by a neural network.

Training a neural network involves adjusting the connections weights to achieve the desired
mapping from the inputs to the outputs. In practical applications, the desired mapping is
not known ahead of time. Instead, a large sample of training patierns is often available. Each
training pattern consists of an input pattern z; and the desired output d. The goal of training is
then to use the training patterns to adjust the connection weights from random starting values
until the output of the neural network matches the desired output. In a sense, the training
procedure adjusts the coefficients of a nonlinear fit (the connection weights in Equation B.3) to

produce the best fit to a set of data points (the training patterns). From a more geometrical

viewpoint, a Network Energy (or Network Error) function

Ny
E=Y"[yp—dp]? (B.4)

p=1
can be defined, where the index p runs over the N, training patterns, and y, and d, are the
actual and desired outputs for pattern p. The Network Energy is related to how much the
current network behavior differs from the desired network behavior. Since the output of the
current network y depends on the connection weights w, the Network Energy is a function of
the connection weights; E = E(w). Thus, the Network Energy function forms a surface in a
multidimensional weight space. During the training process, changing the connection weights
corresponds to exploring regions of this surface in weight space. It would be desirable for a
network to find the global minimum on the Network Energy surface, as this point corresponds
to the situation where the actual network outputs agrees well with the desired outputs.

Many weight adjustment algorithms exist to train neural networks. Most are variants on
the backpropagation algorithm. Training a network with the backpropagation algorithm is an
iterative process that requires many training iterations or epochs. At each training epoch, the
training patterns are presented to the network, and the connection weights are adjusted slightly
so0 as to reduce the Network Energy. The backpropagation algorithm is most easily visualized
as a simple gradient-descent procedure in weight space. Geometrically, the backpropagation
algorithm adjusts the connection weights so as to move the state of the network down inclines

on the Network Energy surface until a minimum is reached. Mathematically, the change in

o

weights is given by

auf, + af previous Awyj). (B.5)

Aw;j = -1
The first term is the gradient-descent prescription, where 7 is a learning constant. The back-
propagation algorithm, by virtue of the chain rule and the generalized delta rule described in
[43], specifies how to evaluate the derivative of the Network Energy for neurons that are not
directly connected to the outputs; thus it provides a recipe to propagate the weight corrections
back through the network layers.

The second term, called the momentum term, is added to help the network avoid getting
stuck in local minima of the Network Energy surface during training. The momentum term
adds a portion o of the weight change from the previous epoch to the weight change for the
current epoch. With a large enough value of a, the network can overshoot local minima during
training. However, values of a or 7 that are too large can cause the training process to become
choatic.

Figures B.3 and B.4 each show how the Network Energy and a selection of connection weights
for a neural network evolved during training. Both training sessions used patterns from the
TRASH application (see Chapter 7), and were started from the same set of initial weights. For
Figure B.3, the training was carried out with a = 0 and 7 = 0.0005. On the left hand plot, note
that the Network Energy dropped rapidly after 30 training iterations, and thereafter improved
only slowly with continued training. Each of the lines in the right hand plot shows the evolution
of a single connection weight as training proceeded. The connection weights plotted happen
to be for the first hidden layer neuron’s connections to each of the 7 input layer neurons. The
training session shown in Figure B.4 used o = 0.5 and 1 = 0.003. Note that at these values,
the training process is slightly unstable; after training rapidly, it underwent a violent oscillatory
period, followed by lesser episodes. The disturbances in Network Energy are correlated with
the disturbances in the connection weights. Note also that the network managed to train to
a slightly smaller Network Energy. In general, it seemed that using training parameters that
were borderline unstable resulted in better performance.

In summary, neural networks have several features that make them useful in high energy

physics and other applications, namely:

e A trained neural network can often generalize its training. That is, if the network is

50 10

Training Ileratio: Training iteration

- =~ Rt , ¢ oy i, (et ST """.
)“uinu_k B.3: Evolution of the Network E 'y | by ome connection “.\(—“»ll'i(li\‘:j_ % _! K
& < S -

aa=0,n=0.0005 training ses: -

100 150

rainin; ll-vu‘n‘,,.

Evolution of the Network Energy ((lt«’tmn-(é'/_»rsmz.'\:-r,ss.m‘.t?iit:)?.m.fﬂjm(mfﬁ‘fﬂd\mﬁﬁ
> e A - e O

0.003 training session

228

t in the training set, it will most likely produce

presented with a pattern that was no
the output associated with the training pattern that is most similar to the test pattern.

Thus, a properly trained neural networks does not simply memorize the input patterns;

it instead learns the general features of the patterns.

P
.«“t

29
gAn:,' !‘unctxona.l relatlon between in
is a large sample of template patterns for training, which could be created by a Monte

puts and outputs can be learned. All that is required

Carlo program.

B 1.3 Ruchie A Sedil Phys Res D, 23, 199, .
e Although the tra.mmg of neural networks can be computationally expensive, a trained

“ network can make a classification very quickly after béing presented with an unfamiliar
W%*Tﬁk'futumﬂﬁmeu’ﬂ*"fﬁorm@’ t{ﬁ“m&h éﬁe‘?gy ‘physics detector

g

